Veicolo: IVECO DAILY 35C14 - TEL. N. ZCFC000005609498 - TARGA: N.D.F.

Allestimento: CASSONE FISSO CON GRU FASSI F32A.0.23

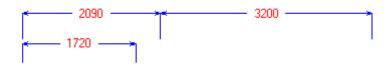
RELAZIONE TECNICA

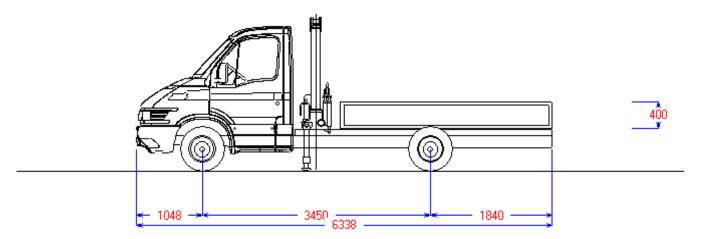
Il sottoscritto Ing. Iunior Alessandro De Meo, iscritto all'ordine degli Ingegneri della Provincia di Latina al n. B123, dichiara che la progettazione e la calcolazione di tutte le strutture da realizzare sono state effettuate in conformità alla disposizioni vigenti (Lettera Ministeriale prot. 1722/DC – MOT074 del 20/10/1999) e si assume la piena responsabilità per quanto riportato nella presente relazione.

L'allestitore è responsabile della conformità dei dati tecnici, dimensionali, ponderali e dei tipi di materiali impiegati a quelli riportati nella presente relazione.

Eseguita da:

Dott. Ing. Iunior Alessandro De Meo Via Alcide De Gasperi, 75 04023, FORMIA (LT)


Telefono/Fax: 0771 790147


e-mail: <u>alessandro.demeo@studiodemeo.it</u>

Web: www.studiodemeo.it

Veicolo: IVECO DAILY 35 C14

Allestimento: CASSONE FISSO CON GRU FASSI F32A.0.23

Larghezza max: 2 160 mm

MASSE

Tara: 2 937 Kg

Portata Utile con solo autista: 563 Kg

Massa Passeggeri: 150 Kg

Portata utile con passeggeri: 413 Kg

Massa complessiva: 3 500 Kg

Masse sugli assi con solo autista

Asse	Tara	Portata	Complessivo	Massa Limite
1° Asse	1 571	- 39	1 532	2 100
2° Asse	1 366	602	1 968	2 600

Masse sugli assi con passeggeri

Asse	Tara	Portata	Complessivo	Massa Limite
1° Asse	1 571	83	1 654	2 100
2° Asse	1 366	480	1 846	2 600

Dimensioni Autocarro

Descrizione	Valore (mm)
Sbalzo anteriore autotelaio	1 048
Sbalzo anteriore telaio	800
Distanza 1° - 2° asse	3 450
Sbalzo posteriore telaio	1 370
Centro 1° asse - testata ant.cassone	2 090
Lunghezza cassone	3 200
Centro 1° asse - centro colonna gru	1 720
Altezza sponde	400
Ingombro posteriore ferramenta	0
Larghezza max	2 160
Centro 1° asse - inizio controtelaio	1 410

Verifica masse sugli assi

Schema masse con solo autista

Descrizione	massa(kg)	distanza(mm)
Tara autotelaio 1º asse	1 371	0
Tara autotelaio 2º asse	631	3 450
Massa gru	465	1 720
Carrozzeria	470	3 690
Massa utile	563	3 690

Masse sugli assi con solo autista

Tara:2 937 kgPortata utile con solo autista:563 kgMassa Complessiva:3 500 kg

Asse	Tara	Portata	Complessivo	Massa Limite
1° Asse	1 571	- 39	1 532	2 100
2° Asse	1 366	602	1 968	2 600

Schema masse con passeggeri

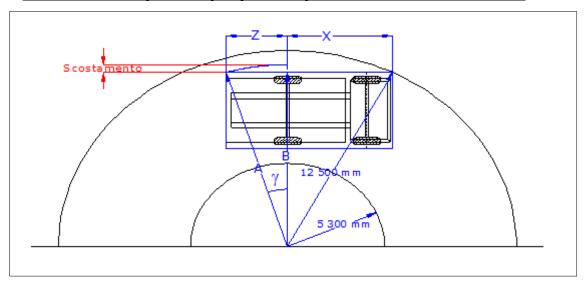
Descrizione	massa(kg)	distanza(mm)
Tara autotelaio 1º asse	1 371	0
Tara autotelaio 2° asse	631	3 450
Massa gru	465	1 720
Carrozzeria	470	3 690
Passeggeri in cabina	150	900
Massa utile	413	3 690

Masse sugli assi con passeggeri

Tara:2 937 kgMassa Passeggeri:150 kgPortata utile con solo passeggeri:413 kgMassa Complessiva:3 500 kg

Asse	Tara	Portata	Complessivo	Massa Limite
1° Asse	1 571	83	1 654	2 100
2° Asse	1 366	480	1 846	2 600

Verifica dello Scostamento


Descrizione	Distanze (mm)
Sbalzo anteriore autotelaio	1 048
Distanza 1° - 2° asse	3 450

Veicolo con ultimo asse non sterzante.

X =	4 498 mm	$\tan \gamma = (Z/B)$	0.158
Z =	1 840 mm	$\cos \gamma$	0.988
$B = \sqrt{(12500^2 - X^2)}$	11 663 mm	$A = \frac{B}{(\cos y)}$	11 807 mm

Scostamento (A - B) = 144 mm

Lo scostamento (144 mm) < (800 mm) soddisfa la Dir. 2003/19/CE

Verifica collegamento telaio - carrozzeria

Carrozzeria 461 daN Portata Utile = 552 daN

Carrozzeria (Mc) = 461 daN Portata Utile (Pu) = 552 daN

Classe Bulloni = 8.8 Sollecitazione ammissibile (τ amm) = 26.40 daN/mm²

_	Diametro (mm)	Area Resistente (mm²)	Numero Bulloni	Area resistente Totale (mm²)
	10	49.2	0	0
	12	71.8	8	574.4
	14	98.8	0	0
	16	137.3	0	0
	18	165.7	0	0
	20	214.5	0	0
			Area complessiva	a (Ac) 574.4 mm²

Forza sollecitante (F = $1.25 \times (Mc+Pu)$) = 1.266 daNSollecitazione di taglio ($\tau = 4/3 \times F/Ac$) = 2.94 daN/mm^2

Tabella di Carico

P - Portata Gru (Kg) L - Posizione del Gancio (mm)

p - Massa braccio Gru (Kg) I - Baricentro braccio Gru (mm)

M_G - Massa Gru (Kg)

Coefficiente di maggiorazione massa braccio $\varphi_1 = 1.1$

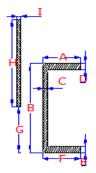
Coefficiente di maggiorazione portata Gru $\frac{4}{3}$ = 1.3

P	L	р	l	M
815	3 200	180	1 400	3 667 600
575	4 400	180	1 900	3 665 200
400	5 600	180	2 300	3 367 400
300	6 800	180	2 900	3 226 200

Momento di sollevamento massimo

$$M = (P * L * \varphi_2 + p * l * \varphi_1) * 0.981 = 3 597 916 daN*mm$$

Carico stabilizzante dovuto alla massa della Gru e al carico sollevato relativamente alla condizione di momento di sollevamento


massimo

$$N = (M_G * \varphi_1 + P * \varphi_2) * 0.981 =$$

1 541 daN

Verifica Telaio-Controtelaio

Sezione telaio

Materiale: Fe 420

Sigma di Snervamento (σ s): 42.00 daN/mm² Sigma di Rottura (σ r): 53.00 daN/mm²

Coefficiente di Sicurezza (K): 2.00

Sigma Ammissibile (σ amm): 19.88 daN/mm²

(Sigma Ammissibile = Sigma di Rottura × 0.75 /K)

Dimensioni


X	Α	В	С	D	Е	F	G	Н	I
0	70	185	4	4	4	70	0	0	0
2 340	70	185	4	4	4	70	Ö	Ö	Ö
2 341	70	185	4	4	4	70	5	300	6
2 900	70	185	4	4	4	70	5	300	6
2 901	70	185	4	4	4	70	0	0	0
3 710	70	185	4	4	4	70	0	0	0
4 150	70	120	4	4	4	70	0	0	0
5 620	70	120	4	4	4	70	0	0	0

Caratteristiche geometriche

X	Area	Ix	Wx
0	1 268	6 435 698	69 575
2 340	1 268	6 435 698	69 575
2 341	3 068	22 841 704	129 907
2 900	3 068	22 841 704	129 907
2 901	1 268	6 435 698	69 575
3 710	1 268	6 435 698	69 575
4 150	1 008	2 352 896	39 215
5 620	1 008	2 352 896	39 215

Verifica Telaio-Controtelaio

Sezione controtelaio gru

Materiale: Fe 510

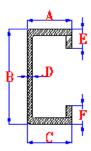
Sigma di Snervamento (σ s): 35.30 daN/mm² Sigma di Rottura (σ r): 52.00 daN/mm²

Coefficiente di Sicurezza (K): 2.00

Sigma Ammissibile (σ amm): 17.65 daN/mm²

(Sigma Ammissibile = Sigma di Snervamento / K)

Dimensioni


X	Α	В	С
2 210	80	140	6
3 270	80	140	6

Caratteristiche geometriche

X	Area	Ix	Wx
2 210	2 496	6 409 472	91 564
3 270	2 496	6 409 472	91 564

Verifica Telaio-Controtelaio

Sezione controtelaio

Materiale: Fe 510

Sigma di Snervamento (σ s): 35.30 daN/mm² Sigma di Rottura (σ r): 52.00 daN/mm²

Coefficiente di Sicurezza (K): 2.00

Sigma Ammissibile (σ amm): 17.65 daN/mm²

(Sigma Ammissibile = Sigma di Snervamento / K)

Dimensioni

X	Α	В	С	D	E	F
3 271	60	120	60	2.5	20	2.5
6 090	60	120	60	2.5	20	2.5

Caratteristiche geometriche

X	Area	Ix	Wx
3 271	631	1 450 359	22 884
6 090	631	1 450 359	22 884

Sollecitazioni Telaio-Controtelaio

Con gru operante posteriormente

Momenti Flettenti

_n°	X	Momento	adanna avu
1	2380	0	colonna gru 1.
2	2480	152945	7
3	2520	-3383793	
4	4250	113131	appoggio appoggio anteriore posteriore

Sollecitazione Telaio

X	X Max	Area	Wt	MMax/2	It	Ict	Momento	Sigma
2 340	2 340	1 268	69 575	0	6 435 698	6 409 472	0	0.00
2 901	2 901	1 268	69 575	1 313 634	6 435 698	6 409 472	658 158	9.46
3 710	3 271	1 268	69 575	943 872	6 435 698	1 450 359	770 280	11.07
4 150	3 720	1 262	68 822	489 016	6 315 238	1 450 359	397 684	5.78
5 620	4 280	1 008	39 215	54 736	2 352 896	1 450 359	33 862	0.86

Sollecitazione Controtelaio

X	X Max	Area	Wt	MMax/2	It	Ict	Momento	Sigma
2 340	2 340	2 496	91 564	0	6 435 698	6 409 472	0	0.00
2 901	2 901	2 496	91 564	1 313 634	6 435 698	6 409 472	655 476	7.16
3 270	2 920	2 496	91 564	1 294 758	6 435 698	6 409 472	646 057	7.06
3 271	3 271	631	22 884	943 872	6 435 698	1 450 359	173 592	7.59
6 090	3 280	631	22 884	934 820	6 435 698	1 450 359	171 927	7.51

Sollecitazione Monolitico

X	X Max	MomMax/2	I	W	Sigma
2 341	2 341	0	51 042 781	274 991	0.00
2 900	2 520	1 691 896	51 042 781	274 991	6.15

Sollecitazioni Telaio-Controtelaio

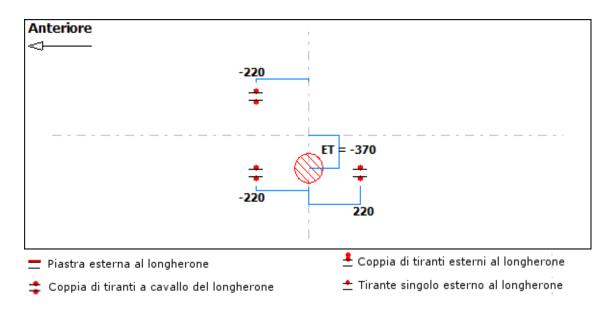
Con gru operante anteriormente

Momenti Flettenti

_n°	X	Momento
1	800	0
2	2480	-3149815
3	2520	421300

Sollecitazione Telaio

X	X Max	Area	Wt	MMax/2	It	Ict	Momento	Sigma
2 340	2 200	1 268	69 575	1 365 803	6 435 698	0	1 365 803	19.63
2 901	2 901	1 268	69 575	169 912	6 435 698	6 409 472	85 130	1.22
3 710	3 271	1 268	69 575	132 772	6 435 698	1 450 359	108 353	1.56
4 150	3 720	1 262	68 822	93 845	6 315 238	1 450 359	76 318	1.11
5 620	4 160	1 008	39 215	62 234	2 352 896	1 450 359	38 502	0.98


Sollecitazione Controtelaio

X	X Max	Area	Wt	MMax/2	It	Ict	Momento	Sigma
2 340	2 340	2 496	91 564	1 502 384	6 435 698	6 409 472	749 658	8.19
2 901	2 901	2 496	91 564	169 912	6 435 698	6 409 472	84 782	0.93
3 270	2 920	2 496	91 564	167 894	6 435 698	6 409 472	83 776	0.91
3 271	3 271	631	22 884	132 772	6 435 698	1 450 359	24 418	1.07
6 090	3 280	631	22 884	131 926	6 435 698	1 450 359	24 263	1.06

Sollecitazione Monolitico

X	X Max	MomMax/2	I	W	Sigma
2 341	2 341	1 503 359	51 042 781	274 991	5.47
2 900	2 480	1 574 908	51 042 781	274 991	5.73

Verifica Collegamento Gru - Controtelaio

Dati configurazione gru

Eccentricità colonna (ET)

-370 mm

- X Distanza longitudinale dal centro colonna Gru (mm)
- Y Distanza trasversale dall'asse di simmetria (mm)

Lato Sinistro

Tipo di Collegamento	Xs (mm)	Ys (mm)
Coppia di Tiranti a cavallo del longherone	-220	430
Coppia di Tiranti a cavallo del longherone	220	430

Lato Destro

Tipo di Collegamento	Xd (mm)	Yd (mm)
Coppia di Tiranti a cavallo del longherone	-220	430

Verifica Collegamento Gru - Controtelaio

Longherone Sinistro

Quota del momento di sollevamento assorbita dai longherone sinistro Ms = 3 346 898 daN*mm

Quota del carico stabilizzante, dovuto alla massa della gru e al carico sollevato, relativamente alla condizione di momento di sollevamento massimo, assorbita del longherone sinistro.

massimo, assorbita dal longherone sinistro $N_S = 1433 \text{ daN}$

Coppia Tiranti a cavallo al longherone - Xs = -220 mm Ys = 430 mm

Distanza longitudinale dal centro colonna Gru -220 mm Distanza trasversale dall'asse di simmetria 430 mm

Materiale Diametro (d) 16 mm 42CrMo4 Sigma Snervamento 93 daN/mm² Passo (p) 1 mm 105 daN/mm² Sigma Rottura Diametro medio (dm) 15.4 mm Coefficiente Sicurezza (k) 2 Diametro di nocciolo (dn) 14.8 mm Sigma Ammissibile 39.38 daN/mm² Sezione resistente (Sr) 179 mm²

Sforzo massimo di trazione (Tmax) $6\,890\,$ daN Tensione massima in un tirante (σ max) $19.25\,$ daN/mm²

Coppia Tiranti a cavallo al longherone - Xs = 220 mm Ys = 430 mm - Con gru operante anteriormente

Distanza longitudinale dal centro colonna Gru 220 mm Distanza trasversale dall'asse di simmetria 430 mm

Materiale	42CrMo4	Diametro (d)	16 mm
Sigma Snervamento	93 daN/mm²	Passo (p)	1 mm
Sigma Rottura	105 daN/mm²	Diametro medio (dm)	15.4 mm
Coefficiente Sicurezza (k)	2	Diametro di nocciolo (dn)	14.8 mm
Sigma Ammissibile	39,38 daN/mm²	Sezione resistente (Sr)	179 mm²

Sforzo massimo di trazione (Tmax) 8 323 daN Tensione massima in un tirante ($_{\mbox{\scriptsize O}}$ max) 23.25 daN/mm²

Verifica Collegamento Gru - Controtelaio

Longherone Destro

Quota del momento di sollevamento assorbita dai longherone destro MD = 251 018 daN*mm

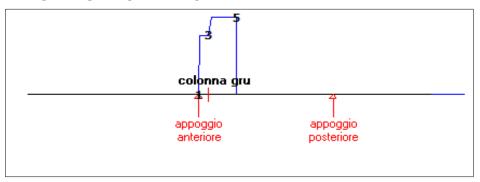
Quota del carico stabilizzante, dovuto alla massa della gru e al carico sollevato, relativamente alla condizione di momento di sollevamento massimo, assorbita dal longherone destro

 $N_D = 108 \text{ daN}$

Coppia Tiranti a cavallo al longherone - Xd = -220 mm Yd = 430 mm

Distanza longitudinale dal centro colonna Gru -220 mm Distanza trasversale dall'asse di simmetria 430 mm

Materiale Diametro (d) 16 mm 42CrMo4 Sigma Snervamento 93 daN/mm² Passo (p) 1 mm 105 daN/mm² Sigma Rottura Diametro medio (dm) 15.4 mm Coefficiente Sicurezza (k) Diametro di nocciolo (dn) 14.8 mm 39.38 daN/mm² Sigma Ammissibile Sezione resistente (Sr) 179 mm²

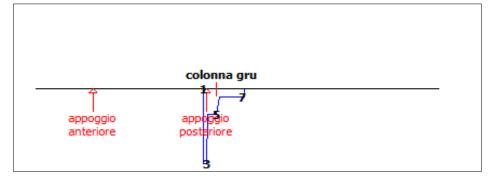

Sforzo massimo di trazione (Tmax) 1 033 daN

Tensione massima in un tirante (max) 2.89 daN/mm²

Collegamento Monolitico Telaio-Controtelaio Gru

Verifica sollecitazioni di taglio - gru operante posteriormente

Taglio n° X Taglio


Sollecitazioni

da X	ad X	Ft x ∆X	da S/I	ad S/I	Forza di Scorrimento
2 341	2 900	919 880	0.003393	0.003393	3 121
2 810	2 811	1 986	0.003393	0.003393	7
2 811	3 260	895 694	0.003393	0.004037	3 487
3 260	3 261	2 010	0.004037	0.003582	8

Verifica sollecitazioni di taglio - gru operante anteriormente

Taglio n° X Taglio

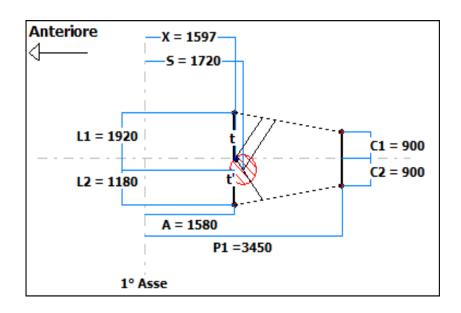
-1951 -1951 -670 -670 -214 -214

Sollecitazioni

da X	ad X	Ft x ∆X	da S/I	ad S/I	Forza di Scorrimento
2 341	2 900	295 069	0.003393	0.003393	869
2 810	2 811	214	0.003393	0.003393	1
2 811	3 260	91 926	0.003393	0.004037	357
3 260	3 261	189	0.004037	0.003582	1

Collegamento Monolitico Telaio-Controtelaio Gru

Bulloni di collegamento


Diametro (mm)	Numero	Forza di Trazione (daN)	Coppia di Serraggio (daN)
10	0	2 558	4 050
12	0	3 734	7 140
14	14	5 138	11 525
16	0	7 140	18 880
18	0	8 616	25 031
20	0	11 154	36 866

Coefficiente di attrito (μ) = 0.25

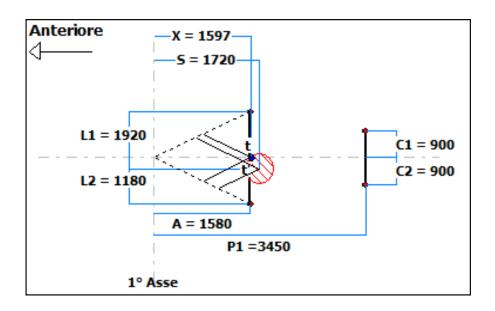
Sigma di snervamento (σ s) = 65.00 daN/mm²

Forza di scorrimento massima = 3 121 daN Forza assorbita dal collegamento = 17 983 daN

Ribaltamento Laterale Gru

Descrizione

Centro colonna gru - Asse anteriore (S)	1720 mm
Baricentro gru - Asse anteriore (G)	1720 mm
Distanza trasversale centro colonna - Stabilizzatore gru destro (l1)	1920 mm
Distanza trasversale centro colonna - Stabilizzatore gru sinistro (l2)	1180 mm
Distanza asse anteriore - Stabilizzatori gru (A)	1580 mm
Distanza primo asse - Asse posteriore (p1)	3450 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato destro asse posteriore (c1)	900 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato sinistro asse posteriore (c2)	900 mm


Lato Destro

Momento Ribaltante 1 680 995 daN x mm Momento Stabilizzante 3 944 668 daN x mm

Lato Sinistro

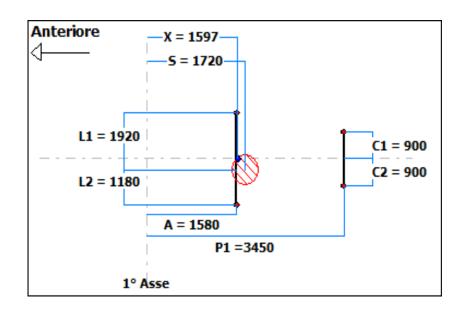
Momento Ribaltante 2 010 130 daN x mm Momento Stabilizzante 3 944 668 daN x mm

Ribaltamento Obliquo Anteriore Gru

Descrizione

Centro colonna gru - Asse anteriore (S)	1720 mm
Baricentro gru - Asse anteriore (G)	1720 mm
Distanza trasversale centro colonna - Stabilizzatore gru destro (l1)	1920 mm
Distanza trasversale centro colonna - Stabilizzatore gru sinistro (I2)	1180 mm
Distanza asse anteriore - Stabilizzatori gru (A)	1580 mm
Distanza primo asse - Asse posteriore (p1)	3450 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato destro asse posteriore (c1)	900 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato sinistro asse posteriore (c2)	900 mm

Lato Destro


Momento Ribaltante 1 821 771 daN x mm Momento Stabilizzante 3 024 775 daN x mm

Lato Sinistro

Momento Ribaltante 2 070 513 daN x mm

Momento Stabilizzante 3 024 775 daN x mm

Ribaltamento Anteriore Gru secondo asse longitudinale veicolo

Descrizione

Centro colonna gru - Asse anteriore (S)	1720 mm
Baricentro gru - Asse anteriore (G)	1720 mm
Distanza trasversale centro colonna - Stabilizzatore gru destro (I1)	1920 mm
Distanza trasversale centro colonna - Stabilizzatore gru sinistro (I2)	1180 mm
Distanza asse anteriore - Stabilizzatori gru (A)	1580 mm
Distanza primo asse - Asse posteriore (p1)	3450 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato destro asse posteriore (c1)	900 mm
Distanza asse simmetria longitudinale autocarro - Supporto sospensione lato sinistro asse posteriore (c2)	900 mm

Momento Ribaltante 1 769 332 daN x mm Momento Stabilizzante 4 319 441 daN x mm

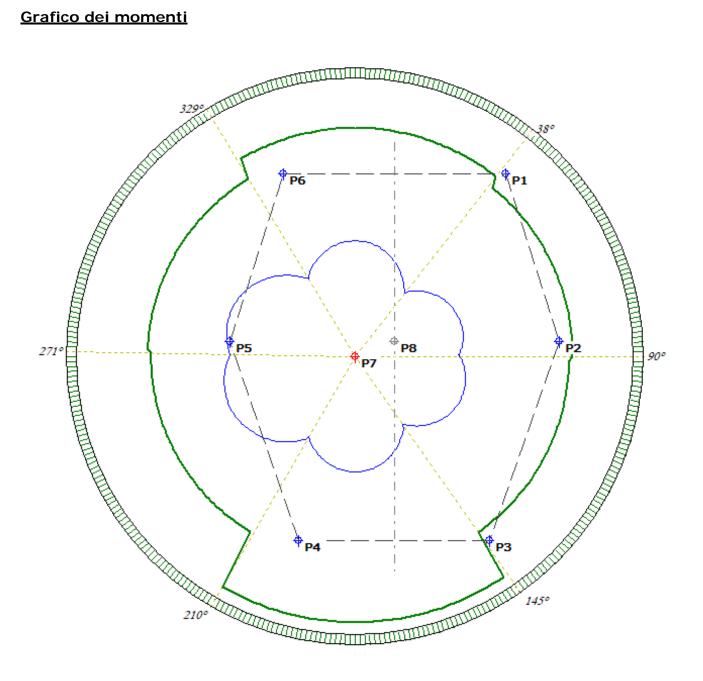
Verifica della stabilita'

Dati caratteristici del veicolo

Carreggiata anteriore	2 100 mm
Carreggiata posteriore	1 800 mm
Distanza trasversale centro colonna - Stabilizzatore gru destro (I1)	1 920 mm
Distanza trasversale centro colonna - Stabilizzatore gru sinistro (l2)	1 180 mm
Distanza longitudinale centro colonna - Stabilizzatore gru	140 mm
Eccentricità colonna (Et)	- 370 mm
Distanza primo asse - Asse posteriore (p1)	3 450 mm

Valori corrispondenti al massimo momento di ribaltamento

- P Portata Gru (Kg)
- p Massa braccio Gru (Kg)
- L Posizione del Gancio (mm)
- I Baricentro braccio Gru (mm)

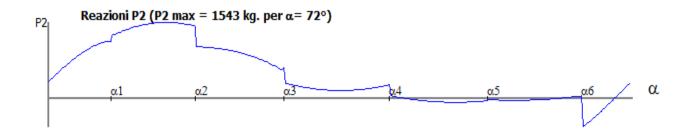

Р	L	р	<u> </u>
300	6 800	180	2 900

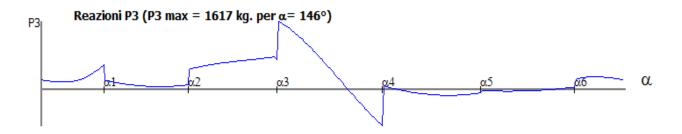
Coefficente di maggiorazione carico (Ks) = 1.2

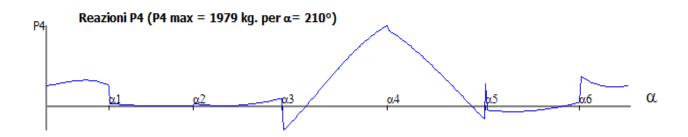
Intervalli dove è soddisfatta la condizione di stabilità

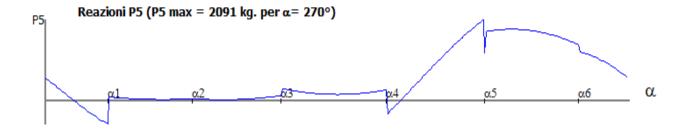
ad Alfa	Carico nominale	% Carico nominale	Carico di prova (PI)	Posizione Gancio	Rid. % alla posizione	Momento Stabilizzante (Ms)	Alfa Max	Mom. Ribaltante normale max (Mr)	coeff. sicurezza (Ms/Mr)
38	300	100	378	6 800	100	4 400 904	0	2 224 080	1.979
90	300	100	378	6 800	100	4 188 278	72	2 135 992	1.961
145	300	100	378	6 800	100	4 121 337	109	2 196 650	1.876
210	300	100	378	6 800	100	5 110 746	180	2 218 320	2.304
271	300	100	378	6 800	100	3 922 129	251	2 599 261	1.509
329	300	100	378	6 800	100	3 987 206	288	2 542 369	1.568
359	300	100	378	6 800	100	4 400 904	359	2 223 590	1.979
	Alfa 38 90 145 210 271 329	Alfa nominale 38 300 90 300 145 300 210 300 271 300 329 300	Alfa nominale nominale 38 300 100 90 300 100 145 300 100 210 300 100 271 300 100 329 300 100	Alfa nominale nominale prova (Pl) 38 300 100 378 90 300 100 378 145 300 100 378 210 300 100 378 271 300 100 378 329 300 100 378	Alfa nominale nominale prova (PI) Gancio 38 300 100 378 6 800 90 300 100 378 6 800 145 300 100 378 6 800 210 300 100 378 6 800 271 300 100 378 6 800 329 300 100 378 6 800	Alfa nominale nominale prova (PI) Gancio posizione 38 300 100 378 6 800 100 90 300 100 378 6 800 100 145 300 100 378 6 800 100 210 300 100 378 6 800 100 271 300 100 378 6 800 100 329 300 100 378 6 800 100	Alfa nominale nominale prova (PI) Gancio posizione Stabilizzante (Ms) 38 300 100 378 6 800 100 4 400 904 90 300 100 378 6 800 100 4 188 278 145 300 100 378 6 800 100 4 121 337 210 300 100 378 6 800 100 5 110 746 271 300 100 378 6 800 100 3 922 129 329 300 100 378 6 800 100 3 987 206	Alfa nominale nominale prova (PI) Gancio posizione Stabilizzante (Ms) Max 38 300 100 378 6 800 100 4 400 904 0 90 300 100 378 6 800 100 4 188 278 72 145 300 100 378 6 800 100 4 121 337 109 210 300 100 378 6 800 100 5 110 746 180 271 300 100 378 6 800 100 3 922 129 251 329 300 100 378 6 800 100 3 987 206 288	Alfa nominale nominale prova (PI) Gancio posizione Stabilizzante (Ms) Max normale max (Mr) 38 300 100 378 6800 100 4400 904 90 0 2224 080 90 300 100 378 6800 100 4188 278 72 2135 992 145 300 100 378 6800 100 4121 337 109 2196 650 210 300 100 378 6800 100 5110 746 180 2218 320 271 300 100 378 6800 100 3 922 129 251 2599 261 329 300 100 378 6800 100 3 987 206 288 2 542 369

Grafico dei momenti




Legenda


- P1: ruota anteriore destra
- P2: stabilizzatore destro gru
- P3: ruota posteriore destra
- P4: ruota posteriore sinistra P5: stabilizzatore sinistro gru
- P6: ruota anteriore sinistra
- P7: centro colonna gru
- P8: baricentro massa stabilizzante
- : settori in cui non e' verificata la stabilita'
- -: momenti stabilizzanti
- : momenti ribaltanti


Grafico delle reazioni

Percentuale della tara + carico di prova gravante sugli stabilizzatori: 50%

Legenda

P2: stabilizzatore destro gru
P3: ruota posteriore destra
P4: ruota posteriore sinistra
P5: stabilizzatore sinistro gru
: settori in cui non e'
verificata la stabilita'
--: valore della reazione
α1-α6: angoli corrispondenti
agli appoggi P1-P6